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The Effective Diffusivity in Two-Phase Material
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Abstract. In this paper we employ Monte Carlo computer simulation tothesextended
Maxwell-Garnett expression for the effective diffusivity irsimmple model of a two phase
material. We determine the effective diffusivity in f.c.c., .@..and s.c. type arrangements of
dispersed spheres at variable densities and for cases wher&ubeiti in the dispersed
phase was less than, and greater than, the diffusivity in thexrphtise. It is shown that the
above equation agrees very well with the simulation data fategsities up to where the
spheres of the dispersed phase touch and over six orders of magnitbderatia of the
diffusivity of the dispersed phase to the diffusivity of the matrix phase.

Introduction

A long-standing problem in the area of diffusion in solids is thermétation of accurate
expressions for the effective diffusivityefin two-phase material given the individual
diffusivities in the component phases. We are referring herdftsidon that does not alter
the morphology or growth of the two phases during the diffusion tidtieroscopic
examples might include the tracer diffusion of a host component eng@urity in a stable
two-phase alloy, or the (interstitial) permeation of hydrog&ough a stable two-phase
alloy. At low temperatures we are, of course, likely to encoymiecipally short-circuit
diffusion along the interphase boundaries. At high temperatures, howeyeanwexpect
thatlattice diffusion will prevail but proceed through each phase at different ratese Whill
be an overall ‘effective’ bulk diffusivity that is dependent on thatine® amounts and the
morphology of the two phases.

In this paper we will refer to the host or matrix phase asephand the dispersed phase
as phase 2. Much of the older literature on the subject deals with a diffusant inetise g
of an impermeable second phase, usually represented as spheres, see, for example, the
review by German [1]. This is a very well-studied speciakcaf diffusion in two-phase
material. Maxwell [2] derived the following classic expressirelating the effective
diffusivity Deg of the diffusant when exploring the pore space:

2D

D
eff 3—8

(1)

where the pore fraction is given lyand 0 is the diffusivity in the absence of the
impermeable phase. Eq. 1 was originally derived for the limitiagee — 1. Neale and
Bader [3] derived it once again for an idealized geometric mimdelise over the entire
porosity range. It has subsequently been shown by Hashkin and Shtri¢maat[Eq. 1
represents the upper bound faMD, for any isotropic medium for adl even when spheres
do not represent the impermeable phase. Using a minimum entrggyert Prager [5]
derived the following condition for {g/D; for particles of arbitrary shape:
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_ g =h
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and for spheres in particular: o
D., =sD1(1—1_—8]. @ =
2 =~

Bruggemann [6] studied a system where one large sphere murgled by a
homogeneous distribution of much smaller spheres. Assuming that tamsgstery dilute
in large spheres Bruggemann adjusted the Maxwell result for thes kit to give:

D = D,e*. (4)

Maxwell-Garnett [7] extended Eq. 1 to include a non-zero diffudd4tyr the dispersed
phase (phase 2):

d(D, -D,)(1-¢)

D, =D, 1+
D,+(d-1)D,-(D,-D,)(1-¢)

()

where d is the dimension (d = 1, 2 or 3). (Maxw&#irnett’s original equation put d = 3.)

More recently, using a concentric sphere model @ahénomenological diffusion
arguments Kalniret al. [7-9] developed the Maxwell-Garnett equation (Egfurther to take
into account the possible unequal partitioninghef diffusant between the two phases. Eq.5
then becomes:

o _ sD,[(e+d~—ed)D, +sD, (d-1)]
T (l-e+se)sD,(d—g)+eD,]

(6)

where s is the segregation factor or segregatiefficent and is defined as the equilibrium
concentration of diffusant in phase 1 to the efuilim concentration of diffusant in phase 2.
Note that except for the case when d = 1 (thentwwe phases simply alternate in one
direction), Eqs 5 and 6 are not symmetric with eespo the interchange of phases 1 and 2.
Put another way, as written, Eqs 5 and 6 refer gitwation only where phase 2 is the
dispersed phase.

Eq. 6 can be made to reduce to Eg. 1 by puttiag8 and setting p= 0 and s=1. It may
appear inconsistent with the notion of an imperrteeglecond phase to put the diffusivity
equal to zero in this phase yet assume that theeotration of diffusant igqual in both
phases (s=1) [8-10]. It would seem much more apjatEpto put & = 0 (and D= 0). If one
does this, it is found that Eq. 1 is in fact reaegebut without the in the numerator. This is
in fact correct. The apparent discrepancy comesutabecause in the above studies of
diffusion in the presence of an impermeable phase, Det Wwas defined by way of Fick’s First
Law in such a way that the impermeable phase wasaousidered part of the accessible
structure. For comparison purposes with the o#mgrations given in this paper it is
necessary then to divide the RHS of Eqgs 1-4 byfa.

The major assumption in Eqs 5 and 6 is that @reefo a hypothetical diffusion situation
where the two phases are arranghernately in all directions. Eqs 5 and 6 do not contain
information about the actual arrangement or mominobf the second phase. Eq. 6 has been
tested by Monte Carlo simulation for the case opemmeable circles in 2D that were
mapped onto hexagonal and square lattices [8-1.aQreement was very good. Similarly,
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a preliminary study of diffusion in random packiagangements of impermeable spheres of
different sizes also showed satisfactory agreertataally with Eqg. 1) [11].

For completeness in our discussion we make mermtfaine extended Hart-Mortlock
Equation for describing 3. This equation was originally derived for the cadetracer
diffusion in the presence of parallel short cirquéiths by Hart [12], extended by Mortlock
[13] to include segregation, and finally made r@es for the case of diffusion in one
dimension by Kauet al. [14]. The major assumption here is that diffusppoceeds along
entirely parallel paths. The extended Hart-Mortl&gjuation reads:
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Monte Carlo studies have shown that Eq. 7 by itsedfides a rather poor description of the
effective diffusivity at more than very low denesiof the dispersed phase [15-17].

The extended Maxwell-Garnett Equation i.e. Eq. peajps to be a potentially very useful
general expression for describing the effectivéuditrity in two-phase material. Apart from
the Monte Carlo studies mentioned above for testirthere have been several other Monte
Carlo studies of the effective diffusivity in theegence of squares [15,16] and cubes [17] in
various ordered arrangements and with differinfuditities. These studies were concerned
with diffusion in single phase nanocrystalline nnaewhere the grain boundaries (at high
densities) can be regarded as a separate highsidiffu ‘phase’. The possibility of
segregation was also permitted. These studies bBhawen that, depending on density,
combinations of Eqs 6 and 7 that take into account the acturahgements perform better
than the basic Eqg. 6 itself. A Monte Carlo studythed case of ordered mono-spheres as the
dispersed phase and at varying densities with rgrgiffusivities would be useful for the
further testing of Eq. 6. This model is a usefukdor describing diffusion in two-phase
structures where the second phase is dispersée imatrix of the first. In the present paper
we undertake a systematic Monte Carlo study toutatie the effective diffusivity in ordered
(f.c.c., b.c.c. and s.c.) arrays of mono-spheres.

Monte Carlo Simulation

In order to attack the problem we represertee diffusivities in the two individual
phases by making use of the equivalence of the B Einstein definitions of the
diffusivity. In particular, we mapped a periodiciucell of the ordered arrangement (f.c.c.,
b.c.c. or s.c.) of spheres onto a very fine meshya(600 x 600 x 600) that was then
explored by randomly walking particles released ahea time and directed by standard
Monte Carlo computer simulation methods, see, fan®le, refs 18,19. The array was, in
effect, a fine-grained replica of the original spb&rrangement of the spheres. This array has
no atomistic meaning: it is purely an artifice toable the macroscopic diffusivity to be
represented by means of a diffusivity based omeawm walk of a particle on a lattice. This
procedure has been used many times in relatedgmsblespecially in connection with grain
boundary diffusion, see, for example, ref. 19. Tiféusivities were scaled directly to the
jump
frequencies from site to site in each phase, tirag scaled to the number of jump attempts
of a particle. The segregation factor s was puiaktp unity. The particles were released
from randomly chosen sites in the array when s @f bne wishes to study, say#sl then
the type of starting site can be weighted accotgipdt was found that several thousand
attempts were sufficient to converge to a diffuyias determined by the Einstein equation:

<R?>
- (8)
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where R is the displacement of a particle afteretimand the Dirac brackets indicate an
average over a large number of particles, in thiec16,

Results and Discussion
In Fig.1 we present results for the normalieéective diffusivity as a function of the
fraction (1€) of phase 2 for the case of a f.c.c. type of rayeanent of
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Figure 1. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a f.c.c. type ofaragement of
spheres for three ratios of/D,: Monte Carlo simulation resulta : D:/D, =10.0;¥: D,/D, =100.0;m: D4/D,
=1000.0. Solid lines correspond to Eq. 6.
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Figure 2. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a b.c.c. type of ngeaent of
spheres for three ratios of/D,: Monte Carlo simulation resulta : D;/D, =10.0;¥: D,/D, =100.0;m: D,/D,
=1000.0. Solid lines correspond to Eq. 6
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Figure 3. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a s.c. type of araremt of
spheres for three ratios of/D,: Monte Carlo simulation resulta : D:/D, =10.0;¥: D,/D, =100.0;m: D4/D,
=1000.0. Solid lines correspond to Eq. 6.
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Figure 4. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a f.c.c. type of rayeanent of
spheres for three ratios obD,: Monte Carlo simulation resulta : D,/D; =10.0;¥: D,/D; =100.0;m: D,/D,
=1000.0. Solid lines correspond to Eq. 6.
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Figure 5. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a b.c.c. type of ngement of
spheres for three ratios ob/D,: Monte Carlo simulation resulta : D,/D; =10.0;¥: D,/D; =100.0;m: D,/D,
=1000.0. Solid lines correspond to Eq. 6.
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Figure 6. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a s.c. type of araremt of
spheres for three ratios ob/D,: Monte Carlo simulation resulta : D,/D; =10.0;¥: D,/D; =100.0;m: D,/D,
=1000.0. Solid lines correspond to Eq. 6.

1DBIU0D - JUBWIWOD - } NSU0d

[ )12eqpasy

£



http://www.scientific.net/feedback/20199
http://www.scientific.net/feedback/20199

-

o
(3]
£ 1

Defect and Diffusion Forum Vols. 218-220

spheres of phase 2. Note that the entire densitgeras covered simply by allowing the
spheres to overlap. Results for three ratios (1000, and 10) of the diffusivity in the matrix
phase (phase 1) to that of the diffusivity in thepdrsed phase (phase 2) are shown. The
highest ratio gives a result that is very simitathe case of impermeable spheres [11]. It is
clear that the extended Maxwell-Garnett equatialn @ does very well in its description of
the effective diffusivity up to roughly the densiiyaction where the spheres touch, this is
given by (1e) = 0.74. Above this threshold the Monte Carlo hssincreasingly deviate
from that predicted by Eq. 6. This deviation iscofirse not unexpected since Eq. 6 assumes
that phase 2 is not continuous. In Figs 2 and 3heev corresponding results for b.c.c. and
s.c. type arrangements of the spheres respectiVese arrangements exhibit completely
analogous behaviour to the f.c.c. case: the thtdsho the b.c.c. and s.c. cases are now at
0.68 and 0.524 respectively.
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In Fig. 4 we present results for the conveitigation where the dispersed phase (phase
2) in a f.c.c. type arrangement of spheres h&sgler diffusivity than the matrix phase
(phase 1). Results for three ratios (1000, 100180 af the diffusivity in the dispersed phase
to that of the diffusivity in the matrix are showi.is clear that the extended Maxwell-
Garnett equation (Eq. 6) again does very well sndiéscription of the effective diffusivity
but there are deviations as the fraction wheresgiteeres touch is approached. This fraction
acts essentially like a percolation threshold e skense that the effective diffusivity rapidly
increases at this point where phase 2 becomescon. Eq. 6 does not contain the physics
to explain this percolation behaviour. In Figs 5 & we show corresponding results for
b.c.c. and s.c. type arrangements of the sphespectvely. These arrangements exhibit
completely analogous behaviour to the f.c.c. cagewith different thresholds as given
above.

It is clear from the present Monte Carlo stuahyd the earlier ones [8-10] that the
Maxwell-Garnett Equation does very well indeed éapressing the effective diffusivity in
an assembly of spheres (and circles) for all dexssitp to where the spheres (and circles)
touch. The actual type of arrangement has littlpasgnt influence on this. On the other
hand, as mentioned above, other Monte Carlo styiite4 7] have shown that the Maxwell-
Garnett Equation does not do so well when the dsggephase is represented as squares or
cubes as might be used as a primitive model fangrsurrounded by wide grain boundary
regions in nanocrystalline materials.

Summary

In this paper we have employed Monte Carlo compsierulation to test the extended
Maxwell-Garnett expression (Eqg. 6) for the effeettliffusivity in a simple model of a two-
phase material. We determined the effective di¥itsiin f.c.c., b.c.c. and s.c. type
arrangements of spheres over a wide range of tgearsil for cases where the diffusivity in
the dispersed phase was less than, and greatertheauliffusivity in the matrix. It was
shown that Eq. 6 agrees very well with the simalatilata for all densities up to where the
spheres of the dispersed phase touch, and overrdexrs of magnitude in the ratio of the
diffusivity of the dispersed phase to the diffugnaf the matrix phase.
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Erratum
In Defect and Diffusion Forum Vols. 210-212 (2002), the title of the paper by.Belova

and G.E.Murch (p55) was inadvertently changed,mduproduction, to "Tracer Diffusion in
the Concentrated Lattice Gas with Self-Excitatidhshould have been, "Tracer Diffusion|in
the Concentrated Lattice Gas with Self-Exclusidny.apologies for any confusion causedl.
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Figure captions:

Figure 1. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a f.c.c. type of rayeanent of
spheres for three ratios of/D,: Monte Carlo simulation resulta : D:/D, =10.0;¥: D,/D, =100.0;m: D4/D,
=1000.0. Solid lines correspond to Eq. 6.

Figure 2. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a b.c.c. type of ngement of
spheres for three ratios of/D,: Monte Carlo simulation resulta : D;/D, =10.0;¥: D,/D, =100.0;m: D,/D,
=1000.0. Solid lines correspond to Eq. 6.

Figure 3. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a s.c. type of aearemt of
spheres for three ratios of/D,: Monte Carlo simulation resulta : D:/D, =10.0;¥: D,/D, =100.0;m: D,/D,
=1000.0. Solid lines correspond to Eq. 6.

Figure 4. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a f.c.c. type of rayeanent of
spheres for three ratios ofD;: Monte Carlo simulation resulta : D,/D; =10.0;¥: D,/D; =100.0;m: D,/D;
=1000.0. Solid lines correspond to Eq. 6.

Figure 5. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a b.c.c. type of ngement of
spheres for three ratios ofMD;: Monte Carlo simulation resulta : D,/D; =10.0;¥: D,/D; =100.0;m: D,/D;
=1000.0. Solid lines correspond to Eq. 6.

Figure 6. Q¢ /D, as a function of the fraction ¢)-of phase 2 for the case of a s.c. type of araremt of
spheres for three ratios obD,: Monte Carlo simulation resulta : D,/D; =10.0;¥: D,/D; =100.0;m: D,/D,
=1000.0. Solid lines correspond to Eq. 6.
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