
The Effective Diffusivity in Two-Phase Material 
 

I V Belova and G E Murch 
 

Diffusion in Solids Group 
School of Engineering 

The University of Newcastle, Callaghan 
New South Wales  2308 

Australia 
 
Keywords: Diffusivity, Diffusion Coefficient, Two-phase, Monte Carlo 
 
Abstract. In this paper we employ Monte Carlo computer simulation to test the extended 
Maxwell-Garnett expression for the effective diffusivity in a simple model of a two phase 
material. We determine the effective diffusivity in f.c.c.,  b.c.c. and s.c. type arrangements of 
dispersed spheres at variable densities and for cases where the diffusivity in the dispersed 
phase was less than, and greater than, the diffusivity in the matrix phase. It is shown that the 
above equation agrees very well with the simulation data for all densities up to where the 
spheres of the dispersed phase touch and over six orders of magnitude in the ratio of the 
diffusivity of the dispersed phase to the diffusivity of the matrix phase. 
 
Introduction 
     A long-standing problem in the area of diffusion in solids is the determination of accurate 
expressions for the effective diffusivity Deff in two-phase material given the individual 
diffusivities in the component phases. We are referring here to diffusion that does not alter 
the morphology or growth of the two phases during the diffusion time. Microscopic 
examples might include the tracer diffusion of a host component or an impurity in a stable 
two-phase alloy, or the (interstitial) permeation of hydrogen through a stable two-phase 
alloy. At low temperatures we are, of course, likely to encounter principally short-circuit 
diffusion along the interphase boundaries. At high temperatures, however, we can expect 
that lattice diffusion will prevail but proceed through each phase at different rates. There will 
be an overall ‘effective’ bulk diffusivity that is dependent on the relative amounts and the 
morphology of the two phases.  
     In this paper we will refer to the host or matrix phase as phase 1 and the dispersed phase 
as phase 2. Much of the older literature on the subject deals with a diffusant in the pore space 
of an impermeable second phase, usually represented as spheres, see, for example, the 
review by German [1].  This is a very well-studied special case of diffusion in two-phase 
material. Maxwell [2] derived the following classic expression relating the effective 
diffusivity Deff of the diffusant when exploring the pore space: 
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where the pore fraction is given by �  and  D1 is the diffusivity in the absence of the 
impermeable phase. Eq. 1 was originally derived for the limiting case �  �  1. Neale and 
Bader [3] derived it once again for an idealized geometric model for use over the entire 
porosity range. It has subsequently been shown by Hashkin and Shtrikman [4] that Eq. 1 
represents the upper bound for Deff/D1 for any isotropic medium for all � , even when spheres 
do not represent the impermeable phase. Using a minimum entropy argument Prager [5] 
derived the following condition for Deff/D1 for particles of arbitrary shape: 
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and for spheres in particular: 
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     Bruggemann [6] studied a system where one large sphere is surrounded by a 
homogeneous distribution of much smaller spheres. Assuming that the system is very dilute 
in large spheres Bruggemann adjusted the Maxwell result for the limit �  �  1 to give: 
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      Maxwell-Garnett [7] extended Eq. 1 to include a non-zero diffusivity D2 in the dispersed 
phase (phase 2): 
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where d is the dimension (d = 1, 2 or 3). (Maxwell-Garnett’s original equation put d = 3.)  

More recently, using a concentric sphere model and phenomenological diffusion 
arguments Kalnin et al. [7-9] developed the Maxwell-Garnett equation (Eq. 5) further to take 
into account the possible unequal partitioning of the diffusant between the two phases. Eq.5 
then becomes: 
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where s is the segregation factor or segregation coefficient and is defined as the equilibrium 
concentration of diffusant in phase 1 to the equilibrium concentration of diffusant in phase 2. 
Note that except for the case when d = 1 (then the two phases simply alternate in one 
direction), Eqs 5 and 6 are not symmetric with respect to the interchange of phases 1 and 2. 
Put another way, as written, Eqs 5 and 6 refer to a situation only where phase 2 is the 
dispersed phase. 

Eq. 6 can be made to reduce to Eq. 1 by putting d = 3 and setting D2 = 0 and s=1. It may 
appear inconsistent with the notion of an impermeable second phase to put the diffusivity 
equal to zero in this phase yet assume that the concentration of diffusant is equal in both 
phases (s=1) [8-10]. It would seem much more appropriate to put s-1 = 0 (and D2 = 0). If one 
does this, it is found that Eq. 1 is in fact recovered but without the �  in the numerator. This is 
in fact correct. The apparent discrepancy comes about because in the above studies of 
diffusion in the presence of an impermeable phase, Deff was defined by way of Fick’s First 
Law in such a way that the impermeable phase was not considered part of the accessible 
structure.  For comparison purposes with the other equations given in this paper it is 
necessary then to divide the RHS of Eqs 1-4 by a factor � . 

The major assumption in Eqs 5 and  6 is that it refers to a hypothetical diffusion situation 
where the two phases are arranged alternately in all directions. Eqs 5 and 6 do not contain 
information about the actual arrangement or morphology of the second phase. Eq. 6 has been 
tested by Monte Carlo simulation for the case of impermeable circles in 2D that were 
mapped onto hexagonal and square lattices [8-10]. The agreement was very good. Similarly, 
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a preliminary study of diffusion in random packing arrangements of impermeable spheres of 
different sizes also showed satisfactory agreement (actually with Eq. 1) [11].  

For completeness in our discussion we make mention of the extended Hart-Mortlock 
Equation for describing Deff. This equation was originally derived for the case of tracer 
diffusion in the presence of parallel short circuit paths by Hart [12], extended by Mortlock 
[13] to include segregation, and finally made rigorous for the case of diffusion in one 
dimension by Kaur et al. [14]. The major assumption here is that diffusion proceeds along 
entirely parallel paths. The extended Hart-Mortlock Equation reads: 
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Monte Carlo studies have shown that Eq. 7 by itself provides a rather poor description of the 
effective diffusivity at more than very low densities of the dispersed phase [15-17]. 

The extended Maxwell-Garnett Equation i.e. Eq. 6 appears to be a potentially very useful 
general expression for describing the effective diffusivity in two-phase material. Apart from 
the Monte Carlo studies mentioned above for testing it, there have been several other Monte 
Carlo studies of the effective diffusivity in the presence of squares [15,16] and cubes [17] in 
various ordered arrangements and with differing diffusivities. These studies were concerned 
with diffusion in single phase nanocrystalline material where the grain boundaries (at high 
densities) can be regarded as a separate high diffusivity ‘phase’. The possibility of 
segregation was also permitted. These studies have shown that, depending on density, 
combinations of Eqs 6 and 7 that take into account the actual arrangements perform better 
than the basic Eq. 6 itself. A Monte Carlo study of the case of ordered mono-spheres as the 
dispersed phase and at varying densities with varying diffusivities would be useful for the 
further testing of Eq. 6. This model is a useful one for describing diffusion in two-phase 
structures where the second phase is dispersed in the matrix of the first. In the present paper 
we undertake a systematic Monte Carlo study to calculate the effective diffusivity in ordered 
(f.c.c., b.c.c. and s.c.) arrays of mono-spheres. 

 
Monte Carlo Simulation       
       In order to attack the problem we represented the diffusivities in the two individual 
phases by making use of the equivalence of the Fick and Einstein definitions of the 
diffusivity. In particular, we mapped a periodic unit cell of the ordered arrangement (f.c.c., 
b.c.c. or s.c.) of spheres onto a very fine mesh array (600 x 600 x 600) that was then 
explored by randomly walking particles released one at a time and directed by standard 
Monte Carlo computer simulation methods, see, for example, refs 18,19. The array was, in 
effect, a fine-grained replica of the original spatial arrangement of the spheres. This array has 
no atomistic meaning: it is purely an artifice to enable the macroscopic diffusivity to be 
represented by means of a diffusivity based on a random walk of a particle on a lattice. This 
procedure has been used many times in related problems, especially in connection with grain 
boundary diffusion, see, for example, ref. 19. The diffusivities were scaled directly to the 
jump 
frequencies from site to site in each phase, time was scaled to the number of jump attempts 
of a particle. The segregation factor s was put equal to unity. The particles were released 
from randomly chosen sites in the array when s = 1. (If one wishes to study, say, s 

�
 1 then 

the type of starting site can be weighted accordingly.) It was found that several thousand 
attempts were sufficient to converge to a diffusivity as determined by the Einstein equation: 
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where R is the displacement of a particle after time t and the Dirac brackets indicate an 
average over a large number of particles, in this case, 106. 
 
Results and Discussion 

      In Fig.1 we present results for the normalized effective diffusivity as a function of the 
fraction (1-� ) of phase 2 for the case of a f.c.c. type of  arrangement of  

 

       
 

Figure 1. Deff /D1 as a function of the fraction (1-� ) of phase 2 for the case of a  f.c.c. type of  arrangement of 
spheres for three ratios of D1/D2: Monte Carlo simulation results, 

�
: D1/D2 =10.0;� :  D1/D2 =100.0; � : D1/D2 

=1000.0. Solid lines correspond to Eq. 6. 
 

               
Figure 2. Deff /D1 as a function of the fraction (1-� ) of phase 2 for the case of a b.c.c. type of  arrangement of 
spheres for three ratios of D1/D2: Monte Carlo simulation results, 

�
: D1/D2 =10.0;� :  D1/D2 =100.0; � : D1/D2 

=1000.0. Solid lines correspond to Eq. 6 
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Figure 3. Deff /D1 as a function of the fraction (1-� ) of phase 2 for the case of a s.c. type of  arrangement of 
spheres for three ratios of D1/D2: Monte Carlo simulation results, 

�
: D1/D2 =10.0;� :  D1/D2 =100.0; � : D1/D2 

=1000.0. Solid lines correspond to Eq. 6. 
                          

 
Figure 4. Deff /D2 as a function of the fraction (1-� ) of phase 2 for the case of a f.c.c. type of  arrangement of 
spheres for three ratios of D2/D1: Monte Carlo simulation results, 

�
: D2/D1 =10.0;� :  D2/D1 =100.0; � : D2/D1 

=1000.0. Solid lines correspond to Eq. 6.  
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Figure 5. Deff /D2 as a function of the fraction (1-� ) of phase 2 for the case of a b.c.c. type of  arrangement of 
spheres for three ratios of D2/D1: Monte Carlo simulation results, 

�
: D2/D1 =10.0;� :  D2/D1 =100.0; � : D2/D1 

=1000.0. Solid lines correspond to Eq. 6. 
 

 

    
Figure 6. Deff /D2 as a function of the fraction (1-� ) of phase 2 for the case of a s.c. type of  arrangement of 
spheres for three ratios of D2/D1: Monte Carlo simulation results, 

�
: D2/D1 =10.0;� :  D2/D1 =100.0; � : D2/D1 

=1000.0. Solid lines correspond to Eq. 6. 
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spheres of phase 2. Note that the entire density range is covered simply by allowing the 
spheres to overlap. Results for three ratios (1000, 100, and 10) of the diffusivity in the matrix 
phase (phase 1) to that of the diffusivity in the dispersed phase (phase 2) are shown. The 
highest ratio gives a result that is very similar to the case of impermeable spheres [11]. It is 
clear that the extended Maxwell-Garnett equation (Eq. 6) does very well in its description of 
the effective diffusivity up to roughly the density fraction where the spheres touch, this is 
given by  (1-� ) = 0.74. Above this threshold the Monte Carlo results increasingly deviate 
from that predicted by Eq. 6. This deviation is of course not unexpected since Eq. 6 assumes 
that phase 2 is not continuous. In Figs 2 and 3 we show corresponding results for b.c.c. and 
s.c. type arrangements of the spheres respectively. These arrangements exhibit completely 
analogous behaviour to the f.c.c. case: the thresholds in the b.c.c. and s.c. cases are now at 
0.68 and 0.524 respectively.  
 
      In Fig. 4 we present results for the converse situation where the dispersed phase (phase 
2) in a f.c.c. type arrangement of spheres has a higher diffusivity than the matrix phase 
(phase 1). Results for three ratios (1000, 100 and 10) of the diffusivity in the dispersed phase 
to that of the diffusivity in the matrix are shown. It is clear that the extended Maxwell-
Garnett equation (Eq. 6) again does very well in its description of the effective diffusivity 
but there are deviations as the fraction where the spheres touch is approached. This fraction 
acts essentially like a percolation threshold in the sense that the effective diffusivity rapidly 
increases at this point where phase 2 becomes continuous. Eq. 6 does not contain the physics 
to explain this percolation behaviour. In Figs 5 and 6 we show corresponding results for 
b.c.c. and s.c. type arrangements of the spheres respectively. These arrangements exhibit 
completely analogous behaviour to the f.c.c. case but with different thresholds as given 
above. 
 
     It is clear from the present Monte Carlo study and the earlier ones [8-10] that the 
Maxwell-Garnett Equation does very well indeed for expressing the effective diffusivity in 
an assembly of spheres (and circles) for all densities up to where the spheres (and circles) 
touch. The actual type of arrangement has little apparent influence on this. On the other 
hand, as mentioned above, other Monte Carlo studies [15-17] have shown that the Maxwell-
Garnett Equation does not do so well when the dispersed phase is represented as squares or 
cubes as might be used as a primitive model for grains surrounded by wide grain boundary 
regions in nanocrystalline materials.  
 
Summary 
In this paper we have employed Monte Carlo computer simulation to test the extended 
Maxwell-Garnett expression (Eq. 6) for the effective diffusivity in a simple model of a two- 
phase material. We determined the effective diffusivity in f.c.c.,  b.c.c. and s.c. type 
arrangements of spheres over a wide range of  density and for cases where the diffusivity in 
the dispersed phase was less than, and greater than, the diffusivity in the matrix. It was 
shown that Eq. 6 agrees very well with the simulation data for all densities up to where the 
spheres of the dispersed phase touch, and over six orders of magnitude in the ratio of the 
diffusivity of the dispersed phase to the diffusivity of the matrix phase. 
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Erratum 
In Defect and Diffusion Forum Vols. 210-212 (2002), the title of the paper by I.V.Belova 
and G.E.Murch (p55) was inadvertently changed, during production, to "Tracer Diffusion in 
the Concentrated Lattice Gas with Self-Excitation". It should have been, "Tracer Diffusion in 
the Concentrated Lattice Gas with Self-Exclusion". My apologies for any confusion caused. 
           DJF 
 
 
 
 
 
 
 
 
 

86 Defects and Diffusion in Ceramics

http://www.scientific.net/feedback/20199
http://www.scientific.net/feedback/20199


 
 
Figure captions: 
 
Figure 1. Deff /D1 as a function of the fraction (1-� ) of phase 2 for the case of a f.c.c. type of  arrangement of 
spheres for three ratios of D1/D2: Monte Carlo simulation results, 

�
: D1/D2 =10.0;� :  D1/D2 =100.0; � : D1/D2 

=1000.0. Solid lines correspond to Eq. 6. 
 
Figure 2. Deff /D1 as a function of the fraction (1-� ) of phase 2 for the case of a b.c.c. type of  arrangement of 
spheres for three ratios of D1/D2: Monte Carlo simulation results, 

�
: D1/D2 =10.0;� :  D1/D2 =100.0; � : D1/D2 

=1000.0. Solid lines correspond to Eq. 6. 
 
 
Figure 3. Deff /D1 as a function of the fraction (1-� ) of phase 2 for the case of a s.c. type of  arrangement of 
spheres for three ratios of D1/D2: Monte Carlo simulation results, 

�
: D1/D2 =10.0;� :  D1/D2 =100.0; � : D1/D2 

=1000.0. Solid lines correspond to Eq. 6. 
 
 
Figure 4. Deff /D2 as a function of the fraction (1-� ) of phase 2 for the case of a f.c.c. type of  arrangement of 
spheres for three ratios of D2/D1: Monte Carlo simulation results, 

�
: D2/D1 =10.0;� :  D2/D1 =100.0; � : D2/D1 

=1000.0. Solid lines correspond to Eq. 6. 
 
Figure 5. Deff /D2 as a function of the fraction (1-� ) of phase 2 for the case of a b.c.c. type of  arrangement of 
spheres for three ratios of D2/D1: Monte Carlo simulation results, 

�
: D2/D1 =10.0;� :  D2/D1 =100.0; � : D2/D1 

=1000.0. Solid lines correspond to Eq. 6. 
 
 
Figure 6. Deff /D2 as a function of the fraction (1-� ) of phase 2 for the case of a s.c. type of  arrangement of 
spheres for three ratios of D2/D1: Monte Carlo simulation results, 

�
: D2/D1 =10.0;� :  D2/D1 =100.0; � : D2/D1 

=1000.0. Solid lines correspond to Eq. 6. 
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